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Three-dimensional spinning solitons in dispersive media with the cubic-quintic nonlinearity

Anton Desyatnikov,1,* Andrey Maimistov,1,† and Boris Malomed2,‡
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We study spatiotemporal three-dimensional bright solitons in optical media whose non-linear response
includes third- and fifth-order terms. By means of numerical simulations, lower and upper stability and exis-
tence borders for the solitons without the internal ‘‘spin’’ are identified. Using the variational method based on
two different trial functions and collating the results, we obtain approximate solutions forspinning~vortex!
solitons. The presence of the lower stability border for both the zero-spin and spinning solitons is a drastic
difference of the three-dimensional solitons from those in one and two dimensions. The results show that the
corresponding stability and existence borders are chiefly determined by the spatial dimension, quite weakly
depending on the soliton’s ‘‘spin.’’ However, the energy of the spinning soliton is much larger than that of the
zero-spin one.

PACS number~s!: 42.65.Tg
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I. INTRODUCTION

Optical spatiotemporal solitons, or the so-called light b
lets ~LB’s! @1–7#, have been attracting a growing interest
the last decade, as they are expected to be a new fundam
physical object, and also have a potential to implement
trafast all-optical switching in a bulk medium@8–12#. Vari-
ous effects generated by interactions between the spatio
poral solitons, such as scattering, fusion, repulsion,
spiraling, have also been theoretically studied@8,9,13–16#.

It is well known that in the Kerr medium with a purel
cubic nonlinear response, LB’s formally exist, but, in bo
the two- and three-dimensional~2D and 3D! cases, they are
unstable against the spatiotemporal collapse induced b
combined effect of the nonlinearity and anomalous disp
sion @3#. To prevent the collapse, it is necessary to cha
the nonlinearity. One possibility is to consider media with
quadratic ~second-harmonic generating! nonlinearity @12#.
The theoretical work in this direction, begun long ago@1#
and continued recently@12#, has finally led to the experimen
tal observation of a LB. In fact, the observed object wa
quasi-2D bullet in a 3D sample of the LiIO3 optical crystal.
The size of the sample was;1 cm. Work aimed at the ob
servation of a fully localized 3D bullet in the same mediu
is now in progress@17#.

Alternatively, the collapse can be checked by a satura
of the Kerr response@18–20#. The dependence of the non
linear correction to the refractive index on the light intens
I is then

nnl5nKI ~11I /I s!
21, ~1!

where nK is the Kerr coefficient, andI s is the saturation
intensity. For this model, the existence and stability of
axisymmetric ‘‘bullets’’ ~spatiotemporal solitons! has been
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known for a long time@21#; 3D spherically symmetric soli-
tons and their stability in the same model were studied
detail by Edmundson@22#. Note, however, that higher-orde
soliton modes, consisting of a dark spot that is surrounded
bright rings, were numerically found to be unstable in the
saturable model@23#.

For weak fields,I /I s!1, Eq. ~1! yields the usual self-
focusing Kerr response,nnl'nKI . With the increase of the
intensity, it is necessary to take into consideration the ne
orderself-defocusingterm in the expansion of the full refrac
tive index:

n5n01n2I 2n4I 2, ~2!

wheren0 is its linear part,n2[nK , andn4[2nK /I s .
Although thecubic-quintic~with respect to the field am

plitude, see below! dependencen(I ) corresponding to Eq.
~2! was obtained from the expansion of the saturable dep
dence~1! for small values of the intensity, it makes sense
consider the cubic-quintic model~2! as an independent one
valid beyond the framework of applicability of the expansi
to Eq. ~1! @24,13#. This is stimulated, in particular, by th
fact that the dependencen(I ) in a form well approximated
by Eq. ~2! has been found experimentally in some orga
materials @25#. From the theoretical viewpoint, there is
drastic difference between the saturable and cubic-qui
models. As was demonstrated long ago by Kolokolov@26#,
the ~nonspinning! spatiotemporal solitons in the forme
model are stable, because the model satisfies the
focusing conditiondn/dI.0 at all values ofI. Obviously,
this is not the case for the cubic-quintic model; hence
solitons’ stability must be studied separately in this model
is noteworthy that the quintic term, while preventing the c
lapse, causes only a small change in the effective potentia
the interaction between far-separated spatiotemporal soli
@14,15#.

An equation governing the evolution of the envelopeE of
the electromagnetic field (I 5uEu2) in a nonlinear isotropic
3107 ©2000 The American Physical Society
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3108 PRE 61DESYATNIKOV, MAIMISTOV, AND MALOMED
dispersive medium, where the refractive index is taken in
form ~2!, is the cubic-quintic nonlinear Schro¨dinger
~CQNLS! equation:

2ikEz1¹'
2 E1kDETT12k2~n2 /n0!uEu2E

22k2~n4 /n0!uEu4E50, ~3!

where k is the propagation constant~wave number!,
D52d2k/dv2.0 is the coefficient of the temporal dispe
sion, which is assumedanomalous~there is no chance to
have solitons if the dispersion is normal, withD,0), T[t
2z/vg (vg being the group velocity of the carrier wave! is
the ‘‘reduced time,’’ and the Laplacian¹'

2 ~representing the
spatial diffraction! acts on the transverse coordinates.

Defining rescaled variables u5EAn4 /n2, t
5Tn2A2k/Dn0n4, z5zkn2

2/n0n4 , and (j,h)
5(x,y)kn2A2/n0n4, one transforms Eq.~3! into a normal-
ized form:

iuz1¹2u1uuu2u2uuu4u50, ~4!

where ¹25]2/]j21]2/]h21]2/]t2 is the spatiotemporal
Laplacian. Note that, like the usual cubic NLS equation,
normalized CQNLS equation~4! contains no dimensionles
parameters. Nevertheless, soliton solutions to Eq.~4! have an
important difference from those found for the Kerr med
namely, the NLS equation admits an obvious rescaling
solutions without changing the form of the equation. Th
makes it possible for a single soliton to represent all
soliton solutions @3#. The situation is different for the
CQNLS equation, in which rescaling the variables withou
change of the equation’s form is impossible. Therefore, i
necessary to search numerically for a whole family of so
tions, by varying values of a properly defined control para
eter. This was done for 2D bright vortex solitons, i.e., loc
ized solutions with an internal vorticity~‘‘spin’’ ! 1, in Ref.
@13#. Later, the analysis was extended to 2D solitons w
zero spin@27#.

The most remarkable property of the 2D vortex solitons
the CQNLS model, discovered by means of numerical sim
lations in Ref.@13#, is their stability~note, however, the in-
stability of ahelical vortex soliton in the same model, wit
an amplitude periodically modulated along the propagat
distance, which was reported in Ref.@28#!. In sharp contrast
with this, 2D vortex solitons in the model with the quadra
nonlinearity, although they exist as stationary solutions,
subject to a strong azimuthal instability, which was predic
numerically@29,30#, and then observed experimentally@31#.
A similar strong azimuthal instability of the 2D spinnin
soliton has been found in numerical simulations of the mo
with the saturable nonlinearity~1! @29#. The latter fact
stresses a drastic difference between the saturable and c
quintic models.

The objective of this work is to find 3D soliton solution
of Eq. ~4!, i.e., the light bullets in the bulk cubic-quinti
medium. In Sec. II, we numerically search for radially sym
metric solitons without the spin. We findtwo branches in the
dependence of the soliton’s energy on its propagation c
stant~i.e., two different branches of the solutions!, only one
of them being stable. This dependence qualitatively~but not
quantitatively! resembles theU-shaped curve known for th
e
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saturable model@22#. We determine a stability threshold fo
the soliton solutions, along with their existence boundary.
Sec. III, which is the core of this work,spinning3D light
bullets are studied by means of the variational approxima
~VA !. We find the corresponding solutions, using two ess
tially different versions of VA, and discuss their commo
properties and distinctions~with the conclusion that both
predict crucially important properties in a nearly identic
form!. Similar to the zero-spin 3D solitons, and unlike th
2D vortex ones@13#, the solution for the spinning 3D soli
tons has stable and unstable branches. The stability thres
for the solutions is found. In Sec. IV, we compare the pro
erties of the 3D light bullets with and without spin. We co
clude that, while the minimum~threshold! energy of the
spinning soliton is more than four times as large as tha
the zero-spin one, the stability threshold, defined in terms
the soliton’s propagation constant, very weakly depends
the spin.

To conclude the introduction, it is relevant to briefly di
cuss how, in principle, the bullets may be generated in
experiment. For the zero-spin case, an incident laser p
may self-trap into the bullet in the bulk medium, as was t
case in the recent experiment@7#. To generate a spinning
bullet, one may use a pulse that has passed through a
cially shaped phase mask, which can lend the pulse the
essary vorticity, as was done in the work@31#.

II. ZERO-SPIN SOLITONS

Following Ref. @3#, we introduce the spatiotemporal ra
dius

r 5Aj21h21t2 ~5!

and search for solutions to Eq.~4! in the form u(j,h,t,z)
5exp(ikz)V(r). An equation forV(r ) can then be easily ob
tained:

V91~2/r !V82kV1V32V550, ~6!

with the boundary conditions defined by means
asymptotic expressions,

V~r !'a~k!~11gr 2!, g5~a42a21k!/6, r→0, ~7!

V~r !'A~k!r 21 exp~2Akr !, r→`. ~8!

Figure 1 displays a set of solutions to Eq.~6!, obtained,
for different values ofk, by means of the shooting method.
is noteworthy that the effective size of the soliton increa
with the parameterk, i.e., contrary to what is suggested b
the asymptotic expression~8!, k21/2 is not an estimate for the
soliton’s size. With the increase of the size, the distribut
of the field at the soliton’s center becomes flatter. This c
responds to a decrease of the curvature parameterg defined
in Eq. ~7!. In the limit of g50, the soliton’s amplitudea at
r 50 assumes either of the two limiting values, which are,
fact, amplitudes of two plane-wave solutions to Eq.~4! with
the same propagation constantk,

a1,2~k![A 1
2 ~16A124k!. ~9!
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PRE 61 3109THREE-DIMENSIONAL SPINNING SOLITONS IN . . .
The dependencea(k) found numerically for zero-spin
solitons, together with that for plane waves, as given by
~9!, is shown in Fig. 2. It is seen from this figure that, wi
the increase ofk, the amplitudea(k) approachesa1(k), at-
taining this value atk5kmax

~3D!'0.15. Thus,k5kmax
~3D! is anex-

istence boundaryof the zero-spin solitons, at which the siz
of the soliton diverges as it is going over into a plane wa
This limitation onk may be regarded as a saturation of t
propagation constant.

In any dimension, there is a similarupper boundary for
the values ofk at which solitons exist. In the 1D case, on
has, instead of Eq.~6!, an equationV92kV1V32V550,
with the well-known exact soliton solution

V2~X!54k@11A12~16/3!k cosh~2AkX!#21, ~10!

whereX is the transverse coordinate. Obviously, the solut
~10! exists atk,kmax

~1D!5 3
16 , at k5kmax

~1D! the soliton amplitude
coinciding with the larger plane-wave amplitudea1 from Eq.
~9!. In the 2D case, we have found, using the same shoo
method, kmax

~2D!'0.18. It is noteworthy thatkmax
~3D!,kmax

~2D!

,kmax
~1D! ; hence we conclude that the upper boundary of

existence of the soliton solutions to Eq.~4! decreases as th
space dimension increases.

The most important physical characteristic of the 3D o
tical soliton is its energy,

E~k!54pE
0

`

V2~r ;k!r 2dr. ~11!

FIG. 1. The solutions for 3D solitons with zero spin. The valu
of the propagation constantk are indicated near the curves.

FIG. 2. The amplitude~at r 50) vs the propagation constantk
for the 3D zero-spin soliton. The maximum of the amplitude
attained atk'0.12.
.
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Figure 3 displays the energy of the 3D LB vsk. A crucial
difference of this dependence from those for the 1D and
solitons ~in the same CQNLS model! is that the energy is
diverging in the limit k→0. This is explained by the fac
that, as seen in Fig. 1, although the soliton’s amplitude v
ishes ask→0, the soliton is quickly getting very broad. Be
cause of the multiplierr D21 in the expression forE @see Eq.
~11!#, the energy is very sensitive to the soliton’s width. O
analysis of the same dependence in the 2D case shows
the energy~or the beam’s power, if the 2D soliton is inte
preted as a spatial cylindrical beam; see, e.g., Ref.@32#! at-
tains afinite valueEmin

~2D!.11.75 atk50, and in the 1D case
the energy of the soliton given by Eq.~10! vanishes ask
→0. An important consequence of the divergence of the
soliton’s energy atk→0 is the presence of aminimum en-
ergynecessary for the existence of the 3D zero-spin solito
whose numerical value isEmin/4p'15 ~note a similar prop-
erty of LB’s in the model with the quadratic nonlinearity
they have nonzeroEmin in both the casesD52 andD53
@12#!.

Lastly, we notice that theU-shaped dependenceE(k) is
tantamount to the existence of two soliton solutions, w
different values ofk, at each value of the energyE.Emin .
This is a distinctive feature of the 3D case, which is a
known in the saturable model@21,22#.

A necessary stability condition for solitons is given by t
well-known Vakhitov-Kolokolov~VK ! criterion @21,33#: the
dependenceE(k) must have a positive slope, i.e.,dE/dk
.0. The fact that the energy of the 3D soliton diverges
both limits k→` and k→0 gives rise to a pointkcr
'0.026, at whichdE/dk changes its sign; see Fig. 3. Thu
the zero-spin 3D solitons are definitely unstable atk,kcr ,
and may be stable atk.kcr ~note that, in some cases, th
Vakhitov-Kolokolov criterion turns out to be not only nece
sary, but alsosufficient for the stability of the soliton
@26,33#!.

III. SOLITONS WITH SPIN ONE

A. Ansätze1: Spherical variables

The spherical spatiotemporal coordinates, supplemen
the radial variabler introduced in Eq.~5!, can be applied to
construct solutions to Eq.~4! in the form of 3D solitons with
an integer spinmÞ0. We search for such solutions as

FIG. 3. The energy of the 3D zero-spin soliton vs its propa
tion constant.
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3110 PRE 61DESYATNIKOV, MAIMISTOV, AND MALOMED
u~j,h,t,z!5exp~ ikz1 imw!V~r ,u!, ~12!

where cosu[t/r, andw is the usual angular coordinate in th
transverse plane~j,h!. Then, Eq.~4! is transformed into

1

r 2

]

]r S r 2
]V

]r D1
1

r 2 sinu

]

]u S sinu
]V

]u D
2

m2V

r 2 sin2 u
2kV1V32V550. ~13!

This is the Euler-Lagrange equationdS50, resulting from
varying the actionS5*0

`dr*0
pL du with the Lagrangian

L5
1

2
r 2 sinuH S ]V

]r D 2

1
1

r 2 S ]V

]u D 2

1
m2V2

r 2 sin2 u
1kV22

1

2
V41

1

3
V6J . ~14!

Hereafter, we consider only the casem51, as it does not
seem plausible that a vortex soliton withm.1 can be dy-
namically stable. Note that it has been demonstrated
dark optical vortices~the ones whose field does not vanish
infinity! are definitely unstable ifm.1 @34#.

We aim to develop the variational approximation for
description of 3D spinning solitons~note that various forms
of VA, using Gaussian and super-GaussianAnsätze, or trial
functions, were applied to the description of 1D solitons
the CQNLS model@35#!. We here adopt the trial function

V~r ,u!5U~r !sinu, ~15!

which, as a matter of fact, represents nothing else bu
spherical harmonic with the quantum numbersl 51 andm
51. Of course, it cannot be an exact solution to the nonlin
equation~13!. One should also bear in mind that this is,
fact, not a spatial but aspatiotemporalspherical harmonic.

Inserting theAnsätze ~15! into the Lagrangian~14! and
integrating it overu, but keeping an arbitrary dependen
U(r ), one can readily derive the corresponding Eul
Lagrange equation,

d2U

dr2 1
2

r

dU

dr
22

U

r 22kU1
4

5
U32

24

35
U550. ~16!

Solutions to this equation pertaining to different values ok
are displayed in Fig. 4. These solutions were found num
cally by means of the shooting method adjusted to the o
ous boundary conditions stating thatU(r ) must vanish lin-
early atr→0 and exponentially atr→`. Similarly to the 2D
case@13#, it was found that the slope of the functionU(r ) at
r 50 increases withk up to a maximum value atk50.09,
and then decreases~in the 2D case, a maximum was attain
at k50.145).

The energy of the spinning soliton~12! is given by the
expression

E52pE
0

`

r 2drE
0

p

sinu du V2~r ,u!.
at
t

a

r

-

i-
i-

Substituting into this formula theAnsätze ~15!, one obtains
@cf. Eq. ~11!#

E~k!5~4p! 2
3 E

0

`

U2~r ;k!r 2dr. ~17!

The energy given by the latter expression is displayed
a function of the propagation constantk, in Fig. 5. The mini-
mum of the function,Emin/4p'62.6, is located atk5kcr
'0.033. Consequently, the above-mentioned VK criter
@21# suggests that the spinning soliton withm51 may be
stable atk.kcr . Strictly speaking, the applicability of this
criterion to vortex solitons, whose amplitude vanishes at
center, has not been proved, but recent results for the
vortex solitons in the present model@13# show that the nu-
merically found stability indeed complies with the VK crite
rion. It is also noteworthy that thekcr does not strongly de-
pend on the spin: a similar value found in the previo
section form50 was 0.026.

It was not possible to find soliton solutions to Eq.~16! at
k exceeding some maximum value. Within the accuracy
the numerical calculations~and of the accuracy provided b
the VA!, this value proves to coincide withkmax

~3D!'0.15,

FIG. 4. Solutions for 3D spinning solitons withm51. The solid
and dashed curves show, respectively, the functionsU(r ) andU(r)
@see Eqs.~15! and~21!# with the same values ofk, which are writ-
ten near the curves.

FIG. 5. The energy of the 3D spinning soliton. The circles a
triangles indicate numerical values obtained, respectively, for
spherical and cylindricalAnsätze @see Eqs.~17! and ~31!#.
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PRE 61 3111THREE-DIMENSIONAL SPINNING SOLITONS IN . . .
which was the upper existence border for the zero-spin s
tons found in the previous section. Thus, the upper existe
bound~in terms of the propagation constant! for multidimen-
sional solitons does not depend strongly on the value of
spin, but it depends upon the spatial dimension: we h
checked that the upper bounds almost coincide too for
solitons withm50 andm51 ~both arekmax

~2D!'0.18; see also
Ref. @13# for the casem51).

The ratio of the minimum energies of them50 andm
51 solitons in the 2D case~which areEmin

~2D!.50 for the
soliton with m51 @13# and Emin

~2D!.11.75 for the zero-spin
soliton! is 50/11.75.4.26. Comparing this to the same rat
in the 3D case, 62.6/15.4.17, allows us to conclude that, i
any dimension, formation of a spinning soliton requires e
ergy which is, roughly, four times that necessary for the f
mation of a spinless soliton. Thus, experimental genera
of the spinning soliton is expected to be harder than of
zero-spin one, but not impossible.

Lastly, the distribution of the spinning soliton’s field i
the plane (r[Aj21h2,t) ~i.e., a cross-section atw
5const) for two characteristic values ofk is displayed in
Figs. 6 and 7.

B. Ansätze2: Cylindrical variables

We will now consider an alternative approximation f
the description of essentially the same solution, i.e., the s
ning 3D soliton. Here, we introduce the cylindrical sp
tiotemporal variables~r, w, t!, wherer5r sinu @in terms of
the spatial variables,r[Aj21h2, i.e., r is the usual radial
coordinate in the transverse 2D plane~j, h!#. This time, a

FIG. 6. Distribution of the 3D spinning soliton’s field~shown by
means of the level contours! in the plane~r,t! at k50.045: ~1! the
sphericalAnsätze; ~2! the cylindricalAnsätze.
li-
ce

e
e
D

-
-
n
e

n-

stationary solution is sought for in the form~we again con-
fine ourselves to the casem51)

u~j,h,t,z!5exp~ ikz1 iw!V~r,t!, ~18!

cf. Eq. ~12!. The substitution of this into Eq.~4! yields

]2V

]r2 1
1

r

]V

]r
1

]2V

]t22
V

r22kV1V32V550. ~19!

We stress that both Eqs.~13! ~with m51) and ~19! are
exact and tantamount to each other. However, their appr
mate solutions generated by VA arenot equivalent. Actually,
comparison between them offers a convenient opportunit
estimate the accuracy and reliability of the VA.

The variational representation of Eq.~19! is dS50, with
S5*0

`dr*2`
` L dt, where

L5
r

2 H S ]V

]r D 2

1S ]V

]t D 2

1
V2

r2 1kV22
1

2
V41

1

3
V6J .

~20!

To apply the VA to this problem, we follow the work@6# and
adopt anAnsätzeassuming the separation of the variablesr
andt:

V~r,t!5U~r!sech~mt!, ~21!

where the inverse temporal widthm is a variational param-
eter. The Lagrangian~20!, integrated over the variablet,
yields anaveraged Lagrangian,

^L&5
r

m H S dU

dr D 2

1
U2

r2 1bU22
1

3
U41

8

45
U6J , ~22!

b[k1m2/3. ~23!

FIG. 7. The same as Fig. 6 atk50.125.
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3112 PRE 61DESYATNIKOV, MAIMISTOV, AND MALOMED
The standard variational procedure applied to the latter
grangian yields the following equations for the functio
U(r) @cf. Eq. ~16!# and parameterm:

d2U

dr2 1
1

r

dU

dr
2

U

r22bU1
2

3
U32

8

15
U550, ~24!

E
0

` ]^L&
]m

dr50. ~25!

It should be noted that the solutionU to Eq.~24! depends on
the parameterb @defined in Eq.~23!#, and it is determined by
boundary conditions

U~r;b!'a~b!r at r→0;

U~r;b!'A~b!r21/2exp~2Abr! at r→` ~26!

with some constantsa(b) andA(b).
Using the notation

« j~b![E
0

`

U2 j~r;b!r dr, j 51,2,3, ~27!

we can rewrite Eq.~25! as

E
0

`F S dU

dr D 2

1
U2

r2 Gr dr5S m2

3
2kD «11

1

3
«22

8

45
«3 .

~28!

Also, Eq. ~24! can be converted into the equivalent form,

F S dU

dr D 2

1
U2

r2 Gr5
d

dr S rU
dU

dr D2brU21
2

3
rU42

8

15
rU6.

~29!

After substitution of Eq.~29! into Eq. ~28!, one should inte-
grate the right-hand side of Eq.~29! over r, the integral of
the first term vanishing due to the boundary conditions~26!.
This procedure results in an implicit functional relationsh
betweenm andb:

m2~b!5«1
21~«2216«3/15!, ~30!

which, considering the definition~23!, yields k(b)5b
2(«2216«3/15)/3«1 .

Using the shooting method, we have found soliton so
tions to Eq.~24! for different values ofb, which are dis-
played by the dashed curves in Fig. 4. Note that the comp
son between the solid and dashed curves, representing
soliton profiles as produced by the two differentAnsätze in-
troduced above~based, respectively, on the spherical and
lindrical coordinates!, makes sense att50, when the spa-
tiotemporal and spatial radial variablesr andr coincide. It is
also noteworthy that the maxima of the slope at the origin
both approximate solutions are attained atk'0.09.

Next, we calculated the values« j @Eq. ~27!#, m @Eq. ~30!#,
and, lastly,k. This allows us to construct the dependenc
« j (k), m21(k), and b21/2(k), which are shown in Fig. 8
Note that the behavior of the soliton temporal widthm21

differs considerably from that of its spatial widthb21/2 @the
widths may be interpreted this way according to t
-

-

ri-
the

-

r

s

asymptotic expressions~26!#. Such a difference is possibl
because of a fast increase of the asymptotic amplitudeA(b)
with b. The minimum of the temporal widthm21, clearly
seen in Fig. 8, occurs atk.0.067, whenm2.b.

It is now possible to evaluate the energy of the soliton,
per the present version of the VA,

E~m,b!52pE
2`

`

sech2~mt!dtE
0

`

U2~r;b!r dr

54pm21«1~b!. ~31!

The energy as a function ofk is shown in Fig. 5. The
minimum of the energy coincides with that atk50.033, pre-
dicted by the previous version of the VA~the minimum en-
ergy itself isEmin/4p'57). So the two very differentAn-
sätze predict almost identical stability borders for th
spinning 3D solitons. However, it is seen from Fig. 5 that t
energy predicted by the cylindricalAnsätze~21! grows faster
than that predicted by the spherical one~15!. It was possible
to find numerical solutions to Eq.~24! only for k,0.14.
Thus, the upper existence limit for the spinning solitons
per the cylindricalAnsätze is slightly less than the abov
limit kmax50.15 generated by the sphericalAnsätze.

The field distributions predicted by the two different tri
functions ~15! and ~21!, at two different values ofk, can
be compared by looking at Figs. 6 (k50.045,m2.b) and 7
(k50.125,m2,b). From these results, we conclude that t
VA predicts the energy of the multidimensional spinnin
solitons better than details of their shape~note that the analy-
sis of the VA for 1D and 2D solitons in the model wit
quadratic nonlinearity led to a similar general conclusi
@32#!.

IV. CONCLUSION

In this work, we sought for 3D soliton solutions in
model of media with self-focusing cubic and self-defocusi
quintic nonlinearities. Numerically exact solutions for th
solitons without spin, and variational solutions~using two

FIG. 8. The values« j , m21, andb21/2 defined as per, respec
tively, Eqs. ~27!, ~30!, and ~23!, vs k. For comparison, the curve
k21/2 is also shown.
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different versions of the variational approximation, whi
yield fairly close final results! for the spinning solitons were
obtained. We predict the existence of two branches in
dependence of the 3D soliton’s energy vs its propaga
constantk for both types of solitons. One of these branch
corresponds to stable solitons, and the other to unstable o
The region of existence of stable solitons is found to
slightly narrower for the spinning solitons: the bottom bord
is at k'0.033 for the spinning solitons, and atk'0.026 for
the zero-spin ones. The top existence borders almost ex
coincide for both types of soliton. Comparison with th
known results for 2D vortex solitons@13# suggests that the
top border is lowered with increase of the dimension from
to 3. A noteworthy common property of the solitons in th
model is that, almost irrespective of the dimension (D52 or
D53), the minimum~threshold! energy necessary for th
formation of a soliton with spin 1 exceeds by more than fo
times the minimum energy necessary to create a spin
soliton.

It still remains to test the stability of the spinning solito
in direct four-dimensional numerical simulations.

Note added in proof.Very recently, direct numerica
simulations of the spinning light bullet~with the values of
d-

. E

r-

-

z.

.
h

e
n
s
es.
e
r

tly

2

r
ss

the spin 1 and 2! in the present~cubic-quintic! model were
performed by D. Mihalache, D Mazilu, L.-C. Crasovan,
A. Malomed, and F. Lederer~unpublished!. The result is
that, strictly speaking, the spinning bullet is always unsta
against azimuthal perturbations, which eventually leads
splitting of the bullets into a set of several flying nonspinni
ones, the initial spin being converted into the net orbital m
mentum of the ‘‘splinters.’’ However, depending on the in
tial energy of the spinning bullet, it may persist over a fair
long propagation distance~many soliton periods! before the
actual onset of the instability. In some cases, the quasista
propagation distance turns out to be so long that the spinn
bullet is virtually stable from the standpoint of any possib
experiment. Thus, the spinning bullets considered in
present paper are quite meaningful physical objects.
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